Deep Residual Learning for Image Recognition

Submitted by like on Mon, 06/19/2017 - 11:40
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers.

用python实现随机森林算法的一个实例

Submitted by meixun on Fri, 06/16/2017 - 09:07
前言: 随机森林是一个非常灵活的机器学习方法,从市场营销到医疗保险有着众多的应用。它可以用于市场营销对客户获取和存留建模或预测病人的疾病风险和易感性。 随机森林能够用于分类和回归问题,可以处理大量特征,并能够帮助估计用于建模数据变量的重要性。 这篇文章是关于如何使用Python构建随机森林模型。

Bit-map空间压缩和快速排序去重

Submitted by meixun on Thu, 06/15/2017 - 09:01
4. Bit-map应用之快速查询 同样,我们利用Bit-map也可以进行快速查询,这种情况下对于一个数字只需要一个bit位就可以了,0表示不存在,1表示存在。假设上述的题目改为,如何快速判断一个数字是够存在于上述的2.5亿个数字集合中。 同之前一样,首先我们先对所有的数字进行一次遍历,然后将相应的转态位改为1。遍历完以后就是查询,由于我们的Bit-map采取的是连续存储(整型数组形式,一个数组元素对应32bits),我们实际上是采用了一种分桶的思想。一个数组元素可以存储32个状态位,那将待查询的数字除以32,定位到对应的数组元素(桶),然后再求余(%32),就可以定位到相应的状态位。如果为1,则代表改数字存在;否则,该数字不存在。

增强学习对于机器人运动控制的六字真言 | 干货

Submitted by pengkun on Mon, 06/12/2017 - 16:59
五月末的人机大战让世人大开眼界,顶级围棋手柯洁落下的眼泪、微博的叹息,都是对AlphaGo这颗强劲“大脑”的赞叹。然而,让人工智能走出娱乐和游戏,真正进入人类的实际生活,通过实现机器人的自主运动来为人类提供服务同样是我们长久以来的梦想。 但是,机器人的自主运动该如何实现?随着深度学习部分解决了机器人的视听识别问题,增强学习技术有望成为突破机器人自主运动难题的一把利剑。 增强学习实际上是“试错法”这一在生活中广泛使用的技巧的理论抽象,即为了达到理想目标而不断试验,并在实际尝试中修正方案,从而逐步提高成功率。 比如在围棋程序中,盘面情况称为“状态”,落子选择称为“行为”;根据状态选择行为的方法就称为“策略”,根据当前状态和行为对输赢的预测就称为“价值”,而当前一步的输赢结果称为“回报”。增强学习就是修正策略从而实现价值最大化的过程。

神经网络基础

Submitted by meixun on Fri, 06/09/2017 - 14:09
神经元是神经网络中最基本的结构,也可以说是神经网络的基本单元,它的设计灵感完全来源于生物学上神经元的信息传播机制。我们学过生物的同学都知道,神经元有两种状态:兴奋和抑制。一般情况下,大多数的神经元是处于抑制状态,但是一旦某个神经元收到刺激,导致它的电位超过一个阈值,那么这个神经元就会被激活,处于“兴奋”状态,进而向其他的神经元传播化学物质(其实就是信息)。

如何在MNIST上构建和训练条件生成式对抗网络(CGAN)?

Submitted by like on Fri, 06/09/2017 - 10:20
定义对象条件的标签(要生成哪个数字) 噪声矢量为Generator模型提供了构建块,它将学习如何将噪声结构化为样本。mx.symbol.Deconvolution操作符用于将初始输入从1x1形状向上采样到28x28图像。 用于生成假样本的标签上的信息是由附加到随机噪声的标签索引的独热编码(one-hot encoding)来提供的。对于MNIST来说,0-9索引因此被转换为长度为10的二进制向量。更复杂的应用将需要的是嵌入而不是简单的单向编码来编码条件。

机器学习十大算法介绍

Submitted by pengkun on Fri, 06/09/2017 - 09:50

James Le 在 KDnuggets 上发布了一篇文章,介绍了他是如何入门机器学习的。此外,他在其中摸索出十大常用的机器学习算法,并逐一进行介绍。

如果你想学机器学习,那怎么入门呢?对于我来说,我是这样开始我的机器学习的,首先,我选修了一门人工智能课程。教我课程的老师是Technical University of Denmark的大学教授,他的研究方向就是逻辑与人工智能。我们用的教材是人工智能的经典教材: Peter Norvig’s Artificial Intelligence — A Modern Approach。这本书主要讲了智能主体、对抗搜索、概率论、多智能系统、AI哲学等等。这门课程我上了三个学期,最后我做了一个简单的基于搜索的智能系统,这个系统可以完成虚拟环境下的传输任务。

通过这门课程我学到了很多知识,在将来我还要继续学习。最近几周,我有幸在旧金山的举办的机器学习大会上与众多机器学习大牛交谈,我和他们聊了很多关于深度学习、神经网络、数据结构的内容。此外,我还在网上选修了一门机器学习入门课程,正巧刚刚修完。在接下来内容中,我将和大家分享我在这门课程中所学到的机器学习常用算法。

面向物联网应用的人工智能相关技术研究

Submitted by like on Wed, 06/07/2017 - 15:57

1 引言

目前对物联网的理解,已经从IoT(Internet of Things)扩展到IoE(Internet of Everything),从一开始定义的传感器网络,发展到万物互联时代。据IDC分析,到2020年,全球将有300亿智能设备接入互联网并产生海量数据。随着越来越多的业界领先公司进入到物联网领域,从对物联网基础设施的建设,物联网各类设备的控制,到物联网产生的数据分析处理,最后到基于数据理解的物联网融合应用研发等还有许多问题没有解决,对于物联网世界未来发展所需要解决的核心技术、技术演进路线等并没有统一的认识。

目前,对于物联网技术的研究热点主要从通信角度,研究物联网终端之间新型通信协议、标准,如低功耗广覆盖(Low Power Wide Area,LPWA)等各类新型通信技术研究。这些研究为未来各类场景下,实现各类物体的低成本连接提供了基本的通信保证。另一方面,物联网领域的标志性应用还未出现,虽然有自动驾驶、智能抄表等案例,但目前还未出现从经济效益、业界影响力,到创新性技术应用的标志性物联网应用。通信技术的升级只解决了物联网的联网问题,并未解决信息技术发展的内在驱动力,即广泛认可的应用问题。解决应用问题的核心技术恰恰是传统通信技术研发机构所不擅长的信息内容理解及应用技术。

特征选择常用算法综述

Submitted by neurta on Wed, 04/05/2017 - 09:01

1 综述

(1) 什么是特征选择

特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。

(2) 为什么要做特征选择

       在机器学习的实际应用中,特征数量往往较多,其中可能存在不相关的特征,特征之间也可能存在相互依赖,容易导致如下的后果:

  • 特征个数越多,分析特征、训练模型所需的时间就越长。
  • 特征个数越多,容易引起“维度灾难”,模型也会越复杂,其推广能力会下降。

特征选择能剔除不相关(irrelevant)或亢余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方面,选取出真正相关的特征简化了模型,使研究人员易于理解数据产生的过程。

 2 特征选择过程

“十项全能”的 IBM沃森人工智能都学会了哪些技能?

Submitted by neurta on Tue, 03/28/2017 - 11:33

在 IBM 的人工智能沃森于 2011 年在 Jeopardy! 中击败人类冠军 Brad Rutter 和 Ken Jennings 之后,它并没有依靠赢得 77147 美元奖金过活。和微软的小娜与苹果的 Siri 不同,沃森的父母 IBM 并不愿意让它免费在自家吃住,所以沃森在医疗保健领域找了一个工作——通过提供治疗建议帮助健康保险公司 Wellpoint 和医生。

自那以后,加上后面跟进的超过 10 亿美元投资,沃森学会的技能越来越多,工作能力也越来越强。通过机器学习、自然语言处理以及其它各种技术的结合,沃森正为多种领域的许多不同类型的公司提供帮助:除了医疗保健,沃森还在时尚、酒店、视频、游戏、零售、金融服务和兽医学等领域崭露了头角。

 

其最新的工作甚至已经涉足到了保护计算机免受其同类的伤害。本周二,IBM 公布了用于网络安全的沃森计划——一个基于云的服务,而非配置在企业控制的私有主机上。

今年秋天,在八所大学的研究人员的协助下,沃森将开始学习识别网络安全威胁,以望其认知能力能帮助识别恶意代码和制定减损策略。其训练数据的核心将来自 IBM 的 X-Force 研究库,该库中包含了 800 万条垃圾邮件和网络钓鱼攻击的数据,还有超过 10 万个漏洞。