图像语义分割

旷视科技提出ExFuse——优化解决语义分割特征融合问题

Submitted by huzhenda on Sat, 09/08/2018 - 11:38

导语

计算机视觉领域有着三项最为基本的任务——分类,检测和分割,其中分割是指从像素层面识别出一张图像上所有物体的位置和分类,使得机器之眼对一张图像达到精确和充分的感知,这也是后续图像认知技术的重要一环。分割分为语义分割、实例分割和全景分割,其中语义分割最为基础,它为图像之中的每个像素做分类,而不涉及实例或背景的区分。

本文发现,当前语义分割方法直接融合高、低特征并不奏效,继而提出新架构 ExFuse,转而在低级特征引入语义信息,在高级特征嵌入空间信息,其性能超越 DeepLabv3,在 PASCAL VOC 2012 分割任务中夺得当前最优。

这一底层突破将在分割技术的适用领域带来新进展,比如自动驾驶,无人机,仓储机器人,医疗影像,无人超市、地理信息系统等。比如,旷视科技基于这一自身原创技术,进一步提升和完善了手机影像产品线,在人体扣像、手机打光、背景虚化等具体应用中不断提升用户体验,这也恰恰是旷视科技一直践行人工智能驱动的行业物联网构建者(AI+IoT)战略定位的证明。