图像识别

RCNN将CNN引入目标检测的开山之作

Submitted by yangjingbang on Sun, 04/15/2018 - 14:03
RCNN算法分为4个步骤 1.候选区域生成: 一张图像生成1K~2K个候选区域 (采用Selective Search 方法) 2.特征提取: 对每个候选区域,使用深度卷积网络提取特征 (CNN) 3.类别判断: 特征送入每一类的SVM 分类器,判别是否属于该类 4.位置精修: 使用回归器精细修正候选框位置

卷积?神经?网络?教你从读懂词语开始了解计算机视觉识别最火模型 | CNN入门手册(上)

Submitted by zhongzhimin on Mon, 07/24/2017 - 17:05
卷积神经网络听起来像一个奇怪组合。这个名字涉及了生物学、数学,还有一点计算机科学乱入,但它却是计算机视觉领域最具影响的创新。在2012年,由于Alex Krizhevsky使用神经网络赢得了ImageNet挑战赛的冠军(这个比赛可被看作计算机视觉领域的奥运会),神经网络第一次崭露头角。神经网络把分类误差从26%降低到15%,这在当时是一个令人震惊的进步。 从那以后,大量公司在他们的核心业务中使用深度学习。Facebook把神经网络用在自动标签算法上,google把它用于相片搜索,亚马逊把它用于产品推荐,Pinterest把它用于房屋列表个性化,Instagram把它用于搜索框架。 然而,神经网络经典且最常用的使用案例仍是图像处理。就让我们一起来看看,CNN(卷积神经网络)是如何在图像处理任务中实现图像分类的。

【MIT计算机视觉预测城市衰落】下一个北上广在哪?人才比钱重要

Submitted by zhongzhimin on Thu, 07/20/2017 - 15:25
一个社区,一个城市的未来会发展成什么样?计算机视觉可以告诉我们答案。MIT 媒体实验室的研究员分析了160万组拍摄于不同年份的照片。使用比较的结果,研究者测试了几个社会科学中关于城市复兴的几个流行的假设。他们发现,受过高等教育的居民的数量、离城市商业中心的接近性、与其他有吸引力的社区的距离以及系统分配的初始完好评分与社区未来的实体条件的改善有着强烈的正相关。下一个大城市的兴起,受过高等教育的人才是关键因素。在中国,如果寻找下一个北上广,这是一个启示。

图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

Submitted by wangqingqing on Fri, 07/14/2017 - 15:10
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。 (1)主要思想: 在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。 (2)具体的实现方法是: 首先将图像分成小的连通区域,我们把它叫细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。 (3)提高性能: 把这些局部直方图在图像的更大的范围内(我们把它叫区间或block)进行对比度归一化(contrast-normalized),所采用的方 法是:先计算各直方图在这个区间(block)中的密度,然后根据这个密度对区间中的各个细胞单元做归一化。通过这个归一化后,能对光照变化和阴影获得更 好的效果。 (4)优点: 与其他的特征描述方法相比,HOG有很多优点。首先,由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不 变性,这两种形变只会出现在更大的空间领域上。其次,在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件下,只要行人大体上能够保持直立的姿 势,可以容许行人有一些细微的肢体动作,这些细微的动作可以被忽略而不影响检测效果。因此HOG特征是特别适合于做图像中的人体检测的。 2、HOG特征提取算法的实现过程: 大概过程: HOG特征提取方法就是将一个image(你要检测的目标或者扫描窗口): 1)灰度化(将图像看做一个x,y,z(灰度)的三维图像); 2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照